移动机器人差速轮运动学模型--(左右轮速度和线速度角速度的相互转换)

机器人底层程序的时候,经常用到航迹推演(Odometry),无论是定位导航还是普通的方向控制。航迹推演中除了对机器人位姿进行估计,另一个很重要的关系是移动机器人前进速度img、转向角速度img与左轮速度img、右轮速度img之间的转换。

机器人局部路径规划算法DWA解析一文中,是在假设已知机器人前进线速度img和角速度img的情况下,对机器人航迹推演的位姿进行推导了,然而缺少如何通过左右轮速度得到imgimg,因此本文将补上这个空缺。

下图是移动机器人在两个相邻时刻的位姿,其中img是两相邻时刻移动机器人绕圆弧运动的角度,img是两相邻时刻移动机器航向角(朝向角head)的变化量。img是左右轮之间的间距,img是右轮比左轮多走的距离。img是移动机器人圆弧运动的半径。

img

移动机器人前进速度等于左右轮速度的平均,这个好理解。

img (1)

现在来推导机器人航向角如何计算,以及如何计算角速度img。如图所示,把两个时刻的机器人位置叠加在一起,可以清楚的看到移动机器人航向角变化量是img。从图中的几何关系可以得到:

img

也就是说移动机器人航向角变化了多少角度,它就绕其运动轨迹的圆心旋转了多少角度。这句话很好验证,我们让机器人做圆周运动,从起点出发绕圆心一圈回到起点处,在这过程中机器人累计的航向角为360度,同时它也确实绕轨迹圆心运动了360度,说明机器人航向角变化多少度,就绕圆心旋转了多少度。而这三个角度中,img很容易计算出来,由于相邻时刻时间很短,角度变化量img很小,有下面的近似公式:

img

所以可以得到机器人绕圆心运动的角速度img,它也是机器人航向角变化的速度:

img (2)

线速度、角速度都有了,因此可以推出移动机器人圆弧运动的半径:

img (3)

从公式(3)可以发现当左轮速度等于右轮速度时,半径无穷大,即直线运动。最后将三个公式综合起来,可以得到左右轮速度和线速度角速度之间的关系如下,:

img

奇妙之二进制 CSDN认证博客专家 嵌入式优质创作者
专注于Linux C/C++、嵌入式Linux开发,偶尔谈谈人生,目前致力于完成大约500篇的linux C/C++开发知识体系库,所有的文章都会一直保持更新(优化内容、排版),想学习的可以订阅我的专栏,也可以关注二进制人生公众号。
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值